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Abstract—In this study, the effect of fractional order derivative on a two-dimensional problem due to thermal
shock with weak, normal and strong conductivity is established. The governing equations are taken in the
context of Green and Naghdi of type III model (GNIII model) under fractional order derivative. Based on the
Laplace and exponential Fourier transformations with eigenvalues approach, the analytical solutions has been
obtained. For weak, normal and strong conductivity, the numerical computations for copper-like medium have
been done and the results are shown numerically. The graphical results indicate that the effect of fractional order
parameter has a major role on all physical quantities involved in the problem.
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1. INTRODUCTION

Many existing models of physical processes have
been modified successfully by using the fractional cal-
culus. A series of integral theories and fractional de-
rivatives was created in the last half of the last cen-
tury. Various approaches and definitions of fractional
derivatives have become the main object of numerous
studies [1, 2]. Recently, to investigate the anomalous
diffusion, a considerable research effort has been ex-
pended, which is characterized by the fractional time
equation of wave diffusion by Kimmich [3] as in the
form below

pc=kl"c;, i=1,2,3, (1)
where k is the diffusion conductivity, p is the mass
density, c is the concentration and /% is the fraction
of Riemann—Liouville integral operator of order o. It
introduced as a natural generalization of the well-known
integral % f(¢) repeated m times and wrote in the form
of convolution type [4]
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where ['(o) is the Gamma function. The fractional
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order of weak, normal and strong heat conductivity
under generalized thermoelastic theory was applied by
Youssef [5] in the following form
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By using Taylor expansion of time-fractional order,
Ezzat and El-Karamany [6] proposed a new fractional
order generalized thermoelasticity model, which de-
veloped by Jumarie [7] as
o o
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The fractional order study of generalized thermo-
elastic problems is an important branch in solid me-
chanics [8—12]. In addition, Abbas [13] studied the
effects of fractional order and magnetic field in a ther-
moelastic medium due to moving heat source using
the eigenvalue approach. Sherief and Abd El-Latief
[14] studied the effect of the fractional order param-
eter and the variable thermal conductivity on a thermo-
elastic half-space. Due to thermal source, the effect of
fractional order parameter on plane deformation in a
thermoelastic medium was studied by Kumar et al. [15].
Abbas and Youssef [16] studied a two-dimensional
thermoelastic porous material under fractional order

g +Ty—=L=—KI*'VT, 0<a<2.
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theory. The fractional order influence in a functional
graded thermoelastic material problem has been solved
by Abbas [17]. Youssef and Abbas [18] studied the
theory of generalized thermoelasticity with fractional
order derivative in the case of variable thermal con-
ductivity. Based upon the theory of two-temperature
generalized thermoelasticity, Zenkour and Abouelregal
[19] investigated the fractional heat conduction for an
unbounded medium with a spherical cavity. Abbas [20]
studied the solution of thermoelastic diffusion prob-
lem under fractional order theory in an infinite elastic
medium with a spherical cavity.

In this work, the eigenvalue approach has been used
to obtain the analytical solutions for temperature, dis-
placement and the stress components. By employing
an analytical-numerical technique based on the eigen-
values approach with Laplace and Fourier transforma-
tions, the nondimensional equations have been handled.
Numerical computations for copper-like medium have
been done for strong, normal and weak conductivity
and the effect of the fractional order parameter has
been estimated.

2. BASIC EQUATIONS

Let us consider a homogeneous, thermoelastic iso-
tropic half-space y = 0 at initial uniform temperature
T,. Cartesian coordinate system (x, y, z) has been used
with y axis is taken perpendicular to the bounding plane
(Fig. 1). The displacement vector has the form u =
(u, v, 0). The governing equations have the following form
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where the operator of fractional integral can be de-
fined as the following [21]:

o—1
f(cp)—ﬁg(m £)*"'f(e)de, (8)
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0<a<1 for weak conductivity,
o.=1 for normal conductivity,

I<a<2 for strong conductivity,
v
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du dv
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where A and p are the elastic parameters, 7T is the in-
crement of temperature, p is the density of mass, o,
o,, and 0,, are the stress components, T is the body
reference temperature, ¢, is the specific heat at con-
stant strain, K is the thermal conductivity, y= (2A + 3u)x
o, and o, is the linear thermal expansion coefficient.
For convenience, the nondimensional variables can be
introduced on the following form:
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where ¢? =(L+ 2u)/p, c=K/(pc,).

In terms of these nondimensional variables (12),
Eqgs. (5)—(11), after suppressing the primes, can be writ-
ten as
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Fig. 1. Geometry of the problem.



